Edit Distance Algorithm

Edit Distance

-:Definition    
    The minimum of operations required to convert one string into other such as:-
Deletion
Insertion
replace
Operations:-
    
                        •Deletion          Insertion            substitute

                     •Gold                 Gold                   Gold

                     • Old                 Goaled               •sold

Edit distance =    1                        2                         1

Edit Distance:- 
 •Edit distance  depends  on  the  available operations.
 The edit distance that allows……
   (Insertion,deletion,replace)
    •Operations is the levenshtien distance

    Levenshtien distance:-
Devised  in 1965by Vladimir levenshtien a Russian scientist .
Some terminology:-
 A string S   S1 , S2 ,  S3 ,………….,Sn              caterpillar  n = 11
 A substring S1…k   S1 …….. Sk,………….,Sn   caterpillar  k = 3

To find the edit distance between string S and T It’s  handy to examine their sub strings……

     Sn                                and                      Tm 
     S1….j                                                       T1….k
for all jfrom n-1 to 1                               for all kfrom n-1 to 1

Edit distance:-

E[ j , k ] = D(S1….j ,T1….k)

E[ j , 0 ] = D(S1….j , “   ”  )     =  j                            deletion

E[ 0 , k ] = D( “   ” ,T1….k)      = k                           insertion



   Computation of the edit distance:-

E[ j , 0 ] = j
Distance of any string of length jto empty string


E[ 0 , k ] = k
Distance from empty string to string of length k


 deletion                                   E[ j-1 , k ] + 1                        
 insertion                                  E[ j , k-1 ] + 1                        
 do no thing                             E[ j-1 , k-1 ]               Sj=Tk 
 substitute                                E[ j-1 , k-1 ] +1         Sj=Tk         

The table of edit distance:-
An algorithm for edit distance:-



  time complexity:-
The time complexity of above solution is exponential. 

   Time Complexity: O(m x n)

Auxiliary Space: O(m x n)
Applications:-
    Edit distance finds applications in computational biology and natural language processing, e.g. the correction of spelling mistakes or OCR errors, and approximate string matching, where the objective is to find matches for short strings in many longer texts, in situations where a small number of differences is to be expected

Matlab Code:-


  
Result of Run:-






        Thank you



اشترك فى القائمة البريدية

عن الكاتب

شارك على وسائل التواصل

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *